

2024 MuseumPests & Pest Odyssey

DEVELOPING COMMERCIALLY VIABLE
NANOBIOPESTICIDES USING HERBAL
PLANTS FOR SUSTAINABLE PEST
MANAGEMENT IN CULTURAL INSTITUTIONS

Dr Fatma Faheem_MSc & PhD in Museology (Conservation Science)

1

Introduction

- Develop indigenous nano-biopesticides for commercialization.
- Synthetic chemical insecticides pose risks like toxicity, resistance, and pollution.
- Use nanoparticles and plant extracts for sustainable pest management.
- Nanoparticles loaded with natural compounds inhibit pests, extending artifact lifespan.
- Market demand for cost-effective pest solutions, offering entrepreneurial prospects.
- Nanobiopesticides offer high efficacy with minimal application and prolonged effectiveness without changing the aesthetic integrity.

Addressing the Research Gap

- Underexplored Potential of Herbal Biocides
- Limited Integration of Traditional Methods
- Absence of Integrated Solutions
- Overreliance on Synthetic Chemicals
- Comprehensive Assessment of Synthetic Control Methods
- Adapting to Governmental Restriction
- Efficacy Analysis of Natural Products
- Novelty of Nanotechnology Application

3

Objectives of the Research

- Develop commercially viable, environmental friendly nanobiopesticides.
- Introduce indigenous nanobiopesticides for pest control in cultural institutions.
- Promote traditional Indian conservation practices globally.
- Re-evaluate the validity of traditional methods integrating with cuttingedge nanotechnology for pest control.

- Explore the potential of nanomaterials for pest control in cultural institutions.
- Advocate for integrating traditional methods with nanotechnology in conservation strategies.

Current status of the technology (including technology readiness)

- Limited focus in recent papers on plant extract-based nanobiopesticides.
- Previous studies mainly concentrate on nano-biopesticides for agricultural use, not adapted for the museum and conservation field.
- Established methods for nanomaterial synthesis and pesticide development, but the idea of developing nano-biopesticides is a recent exploration.
- Technology readiness level suggests the potential for success in this innovative approach.
- Synergizing nanoparticles with plant extracts shows promise for enhancing pesticidal/insecticidal properties.

7

Expected Outcomes of the Proposal

- Development of Sustainable and Culturally Sensitive Pest Management Solutions.
- Effective Nano-Biopesticides Coating, icreases the longevity of the artifact, specimen/collection.
- Identifying Low-Cost and Effective Technological Solutions.
- Highlights nanotechnology's promising future in the heritage and museum sector.
- Recognititon as a model for preservation of cultural heritage

Conclusions

- Synthesis of Nanoparticles through Nanotechnology offers innovative, sustainable pest control method for cultural heritage.
- Our objectives prioritize environmental safety, promoting and integrating traditional knowledge, innovation, and preservation of cultual heritage globally.
- We're at the forefront of a global shift towards sustainable preservation of cultural heritage.
- International collaboration and knowledge sharing are key to overcoming challenges.
- Our meticulous approach, from nanoparticle synthesis to safety analysis, ensures comprehensive results, promises not only effective results but also valuable contributions to the global scientific community.
- This research is not merely about offering solutions; it's about leaving an enduring legacy.

9

References

- Volodymr I. L, Tetiana M. M, Viktor V. H, Janet M. S and Kenneth B. S, Pesticide toxicity: a mechanistic approach, EXCLI Journal: 2018. 17: p. 1101-1136.
- Taylor, R., T. RWD, and E. NJ, Laboratory evaluation of four insecticides for controlling Dermestes maculatus Degeer on smoke-dried fish. 1982.
- Benelli, G., et al., Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. Journal of cluster science, 2017. 28(1): p. 3-10.
- Yasur, J. and P.U. Rani, Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environmental Science and Pollution Research, 2013. 20(12): p. 8636-8648.

References

- Smith, K., D.A. Evans, and G.A. El-Hiti, Role of modern chemistry in sustainable arable crop protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008. 363(1491): p. 623-637.
- Benelli, G., Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme and Microbial Technology, 2016. 95: p. 58-68.
- Benelli, G., Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitology research, 2016. 115(1): p. 23-34.
- Puoci, F., et al., Polymer in agriculture: a review. American Journal of Agricultural and Biological Sciences, 2008. 3(1): p. 299-314.

11

Thank you for listening!